PITHAPUR RAJAH'S GOVERNMENT COLLEGE

Autonomous and NAAC Re-accredited with 'A' Grade (3.17/4.00 CGPA)

Affiliated to Adikavi Nannaya University

Opp. Mc Laurin School, Raja Ram Mohan Roy Road, Kakinada 533001, Andhra Pradesh, India E-mail: kakinada.jkc@gmail.com, Tel: 0884-2379480

N. Jessica M.sc APSET

LECTURER IN MICROBIOLOGY

DEPARTMENT OF MICROBIOLOGY

P.R.G.C (A),KAKINADA

microbial physiology and metabolism

problems, these are also involved in catalysis of reactions and maintenance of protein structure (2) Uptake of nutrients by the cell: The first step in nutrient use is uptake of the required nutrients by the microbial cell, uptake mechanism must be specific - that is the necessary substances and not others, must be acquired. Nutrients must pass through a selectively permeable plasma membrane that will not permit the free passage of most substances. the most important transport mechanisms are. (12 Passive diffusion! the process in which. mole aules move from a region of higher concentration to one of lower concentration because of random thermal lagitation. the rate of passive diffusion is dependent on the size of the concentration gradient between a cell's exterior and it's interior. very small molecules (4100,02 & co2) often move across membranes by passive diffusion. 12) Facrillated diffusion; the rate of diffusion across selectively permeable membranes is greatly increased by using corrier proteins, talled permeases, which are embedded in the plasma membrane . Because carrier out the diffusion process, it is called facilitated diffus Ston. the rate of transport increases with the concentration gradient much more rapidly

and at lower concentrations of the diffy, sing molecule than that of passive diffusion the curve below resembles an enzymen substrate and it different from the linear response seen with passive diffusion. (3) Active transport: M.O often live in habitate with very dilute nutrients sources, must be able to transport and concentrate these nutrients, thus facilitated diffusion mechanisms lare such situated always adequate and other approaches must be used the two most important transport mechanisms in such situation are active transport & group translocation, both energy-dependent processes the transport of solute molecules to higher concentrations or against concentration gradient with the use not metabolic energy. the carrier proteins or permeases bind particclar solute with great specificity, is also carrier saturation effect at high solute concentr ation. (4) Group translocation: Many bacteria take up molecules by group translocation a process in which a molecule is transported into the cell while being chemically aftered. It is energy - dependent transport because metabolie energy is used the 1,2,3 types the solube molecules move across a membrane without modification. The best -known group translocation system

is phosphoenolpyruvate. sugar phosphotransferase system (pts). it is variety of sugars into cells while phosphorylating them using phosphoenolpynuak iPEP) as the phosphate donar. Facilitated of Carrier (Complete of Compl cation of Carrier of Schemically modified (3) Nutritional groups of microorganisms: Hicroorganisms, like all living organisms, require energy and nutrients to build proteins and structural membranes and drive brochemical processes. Microorganisms require source of carbon, nitrogen, phosphorous, iron and a large number of other minerals, carbon, nitrogen and water are used in highest quantities. these nutritional groups are classified into 11) Auto trophs: Autotrophic microorganisms are those which obtain their nutrition from inorganic compounds. carbon dovide is typically

the role source of cellular carbon. Autotrophs use hydrogen sulphide ammonla or hydrogen go to reduce carbon into necessary sugars. Most autotrophs are photoautotrophs and can fly carbon. again divided into two types, those who do not produce oxygen on a byproduct are term ed as anaerobic anoxygenic phototrophs. those which produce oxygen are termed as aerobic anoxygenic phototrophs. (e) Heterotrophs: Heterotrophic m.o can acquire inorganic metabolite such as the and coz from the environment but can not convert them into foods. saprophytic microbes are examples of heterotrophs they meet their nutsitional requirement from dead ong ance matter, using enzymes to breakdown complex compounds and release putsients and energy. (i) Holotrophs: they are the free-cluing bulk-feeders (ii) saprotrophs: saprotrophs comprise the slime mold, many bacteria and fungi. (111) Parasites: Parasites are those which me entirely on other siving organisms too nutrition which (W) Symbionts: which depends upon other for supp tement of certain ingredients of neutrition which they cannot acquire from nature or can't synthesize (3) Lithotrophs: 1ithotrophs are bacteria which use reduced inorganic compounds are the electron (H-donor) in anaerobic con aerobic respiration. (1) chemolithotroph's a able tobuse inorganic reduced com pounds as a source of energy through oxidations as a survey of the photo lithotrophs: obtain energy from light and we inorganic electron donors only to fuel biosynthetic reaction (4) Mix Otrophs: It is an organism that can cure a mix of different sources of energy and carbon, instead of having a single trophic mode Mixotrophy may be obligately acultative (1) obligate mixotrophy (1) Facultative mixotrophy.

(4) Growth Media (08) Culture Media

* Microorganisms now can be cultivated and ma inted in the laboratory environment by providing

all the nutrients and environmental conditions need for their optimal growth, the nutrients

can be supplied in required proportion while making solid or liquid media such a nuthern

preparation which is used to grow and maintain microorganisms is called a growth median

con culture medium. It said this many to the * growth media are also known as culture

media. * there are thousands of different kinds of media alteady known. All these can be

booadly classified into two categories called non-synthetic and synthetic media

* Non-synthetic medla are consist natural ingredien semi-synthetic medla. * Synthetic media are confist of chemicals.

Non-synthetic media con Natural media: they contain simple ingredient having nutrients of unknown composition like peptone, beef extract, yeast extract, potato,

etc which provides a wide range of nutrients aminoacids, peptides, nucleotides extamins, minerals, carbon source.

non-synthetic media! Ex: Blood agar, chocolate agar: 3 synthetic media: these media are constructed using specific chemicals in their exact prof ortion it commonly used for growth of mich

organ Ex: Nutrient agar Macconkey agar requiremepasai cor) Hinimal media: A minimal medium is one which supple only the minimal nutritional requirements of a particular organism, these type of media supports nost non-fastidious organisms. ExiNutrient ExiNutrient broth Nutrient agar. Enriched medla: when extra nutrients like blood serum egg, york, etc., are, added to the minimal medium, it becomes enriched it supports the growth of nutritionally fastidious bacteria. Ext blood agar, serum agar selective media: mount a minimum a man media: The media which encourages the growth of a sought after microorganisms by inhibitting, the growth of all other micross anisms are called selective media. Ex: XLD agar, Hannitol Sait agar Differential media! reglose 14sine Deoxycholore . The media which lare wised to distinguish between microorganisms without selecting . For the growth you consparticular type lake? called differential media at tavours the appearance of specific identifying traits that are characteristical of particular microorganism. Ex: Bloodagar in haemolytic and Non-haemolytic bacterial !!

Different phases of growth in batch cultures:
Growth curve of Hichbial population: pattern of microbial growth shows a definite pattern which can be plotted in a graph, such forms a curve called gratoth curve of the microbes. the curve shows s-shaped pattern called to the facilities the tect. sigmoid curve. ifferient growth curve: when microbes are cultivated in a defined all necessary conditions are medium in where provided the growth passes through severi distinct stages the curve depicts has in initial stage the growth is very slow and then the increases rapidly only to come to a stril after the no gain no hoss the population number decline and finally all del taneously the critique systems begins to get. phases of growth? (1) Lag phase (2) Accelerating phase phisosophy but post (4) bedining growth phase

(4) bedining growth phase

(5) con on the phase

(6) bedining growth phase

(7) bedining growth phase (5) Stationary Phase the returnal instanctic activities to (6) beath or decime phase (7) Log or death phase a) Lag phase in adaptions log rephasen is the period of growth that during which neither cell number nor cell mass increases. In this period the cell which

will undergo division adapt and acclimatize reself to the situation. the duration of the phase varies depending on factors like the environ nment. existing in the culture setup, the anality of the inoculated cells status of of nutrient previous growth condition from which the inoculums has been taken, etc. # the inocultums is taken from old cultures the rag phase would be longer as cell take time to repair cellular components. vigrosously growing culture is for inoculation, lag phase become shorter. (2) Accelerating Growth phase: This is transition period between the lag phase and the log, phase cells begins to inche lase in numbers as the time of adaption and a eclimatization comes to an end and simultaneously the enzyme systems begins to act. (3) Log or exponential phase: vapid growth eng than iag and accelerating phase when comes to an end the cells start dividing regularly at constant rate, with an increase in their number and mass, buring expone phase, the cellular metabolic activities reach their peak. In this situation the rate of growth remains constant and the cell number becomes double with every cell division, Mathematically it can be represented as AND WAS THE WOLD OF THE STATE O

where Nt is the number 1 of immorber 1 where the times planted in the server No = number of interobergiat time zero n = number of generations The time taken by ancellito divide is termed generation time 191, Forerande - Bacch romy (4) Declining growth phase (les cerevisiae produces of the stationary phase in arouth the decrease in growth trate, taxes place due to exhaustion of nutrent and accumulation of toxic waste products. Autilion es environme at a condition can revive the system However all microber do not alle tatta time. Hose microbes which produce endospores a eysts The American Alices and a escape death.

(5) stationary phase: growth plateaus

(5) stationary phase: growth plateaus

(5) stationary phase: growth plateaus

(6) of most nutrients in the medicum and also

of most nutrients in the medicum and also

due to accumulation of toxic waste produced

by the cells during growth phases. These

cause the curve to move stratght. In this phase, no net increases in the population size takes place. Here I the mamber of cells millionopecs copies formed equals the number of cells died the population size is at its peak during statenary phase the time required to reach stationary phase and the duration of the

phase vary with the type of microorganism the neithernt availability and other environ mental "conditions" in the second (6) Death or decrining phase crowth stationary phase is short, 4 leads to declining phase where growth rate sharply start declining cells neither get nor the condition is suitable for growth due to accumulation of metabolic waste and therefore cells cannot repair the damage. Death rate rapidly increases. the total mass may remain constant due oresent. That the dead cell remain (7) Log Death phase! cell death exceeds growth In this phase the rate of the cell deathe exceeds the rate of new cell tornation this lead to rapid decrease in the popular thon, size and which ultimately leads to exponential death or wholesale death. It mans the entire system become dead. No addition of nutrition for environmental condition can revive the system. However all m'icrober do not die at a time those microbes which produce Endospores or cyts escape death. AND THE PROPERTY OF THE PROPERTY OF THE PROPERTY AND THE PROPERTY OF THE PROPE

obligate anaerobes: this microorganisms don't need oxygen and it is present they die.

Methods of measuring microbial growth:

The purpose of estimating any clinical sample pus, blood, stutum is to measure the rate of infection of an individual by measuring the bacterial growth per an water sample tells us whether the water is suitable for drinking are not by using this methods contaminated food or drugs can be identified.

there are two approaches for measure the bacterial growth. they are in direct method

121 Indirect method especial and a state of the sta

ill Direct method!

count method.

the actual number of bacteria are can be estimated. Examples of this method obe membrane filter method, most propable number (MPN), direct microscopic count, standard plate

civilizate microscopia count method! Bacteria can be counted essayly easily and accurately with the petroft-hausser chambe the is a spectal slide accurately ruled into equares that are offyoo immsquare. a glass cover stip test above the stide a suspension of unstained bacteria can be counted in the chamber using a phase contrast mechoscope. Direct microscopic count can be made rapidly and Simply with a minimum of equipment more over the morphology of the bacteria can be observed very dense suspensions can be counted if they are detuted appropriately suspension having low number of bacteria suspension at the begining of the in standard plate count cormable count: . This method allows determination of the number of cells that will multiply under certain defined conditions a measured amount of bacterial suspension is introduced, into petridish after which the again medium is add and the to thoroughly mixed by totating the place when the medium solldfys the organism are trapped in the gel each organism on reproducing selfs until a usible mass of organisms (a colony) is developed that is one organisms nism gives rise to one colony. Hence a colony count performed and the way reveals the viable population of the inoculum the oligin

sample is resultly diluted so that number of colony deleloping on the place will fall in the range of 30-300 no. of colonies, colonies are usually counted by illuminating them from below colare field illumination so that they are easily visible and a large magnified lens is of an used. (iii) Most probable number (12) Indirect method! Indirect methods for measuring microbial growith primarily involve measuring a characteristic associated with cell mass, like turbidity (coudiness) using a spectrophotometer and blomass (i) turbidity: these cloudiness of a bacterial suspension is measured using a spectrophotometer to estimate cell density. the amount of light passing through a bacterial suspen Sion with higher turbidity indicating a larger microbial population, which is usually expressed as absorbance or optical density convalue (11) Biomass: the most common methods involve ve estimating the total mass of living mo. within a sample by analyzing specific cellular components like phospholipid fattyacres (PLFA's), microbial carbon extracted using chloroform fumigation or by measuring ATP. which are considered good indications of active microbial biomass.

IIII) absorbance

Factors influencing microbial growth!

The growth of the microoorganisms depends various factors these factors can be classified into physical, chemical and nutritional factors. they are:

they are:

(1) Temperature: temperature influences the growth by affecting the enzyme activities of microorganisms the are minimum, maximum and opti-

the minimum or above maximum growth temperature. Entyme activity stops when the minimum and the maximum temperature cross. The rate of chemical reaction increases: almost doubles with every coic rise in temp

erature and the microorganisms grow faster.

there are divided into 5, based on temperature

requirement Psychrophiles, psychrotrophs, obligate psychrophiles, mesophiles, Thermophiles.

Hyperthermophiles.

(2) pH: one of the most important factor

the hydrogen ion concentration (PH) of the medium of growth. Hicroorganisms can grow over a

ium of growth. Hicroorganisms can grow overa wide range of PH from zero to around 10.

(a) Acidophiles: these thrive well at very tow pH values with optima between pH 0 and 5.5. Most fungi fall in this category.

(b) Neutrophiles: These organisms prefer pH in near neutral range. these can grow within a pH range of 5-5 to 8. Host bacteria comes category

(c) Alcalophiles: these organisms grow well within pH range of 8.5 to 11.5. Extreme alkalophiles have optima at pt 10 or higher eg: Bacillus allalophilus. (3) oxygen concentration; Hicroorganisms vary in their requirement too atmospheric oxygen. Algae are always aerobic. Foingl except yeast are normally aerobic they are five kategories based on use of oxygen (a) obligate aerobes: oxygen used to their growth. It is used as terminal electron acceptor too election transport chain during aerobic respiration and also in synthesis of sterols and unsaturated tatty acids. LE Macroaerophiles! Oxygen for growth at a level of 9 to 10%. + 10 100 (c) Facultative anaerobes: they can grow both in presence or absence of oxygen (d) Aerotolement anaerobes: they do not use oxygen even it it is present. ces obligate anaerobes! they do not need oxygen is present they die these anaerobes are generare energy by termentation. (4) water activity: water is essential for growth and development of microoxganisms as they take in all nutscents in soluble form. Most M.D. are sensitive to osmotic pressure and do no tokerate high asmotic pressure. those which prefer high osmotic pressure are called osmophfles there are some which total do not require high asmotic pressure but can tolerate high osmothe pressure, are called asmotolerants, which are

1) HMP pathway

ulay Iday

* HMP pathway or HMP shunt is also called as pentase phosphate parthinay or phosphoglywonak pathinay.

* This is an alternative pathway to glylorusis and Teat cycle for the oxidation of glucose. * HMP shunt is more anabolic in nature.

* It is concerned with the biosynthesis of NADDH & pentoses. * About 10% of glucose entering in the path-

* The liver & RBC metabolise about 30%. of givese by this pathway 1 Loctation of the pathway

* The encymes are located in the cytosq. * This tissues such as liver, adipose tissue

advenal gland, erythrocytes, tester & lactating mammory gland are highly active in HMP shunt.

3 Reactions of the pathway privided into two phases - Oxidative phase

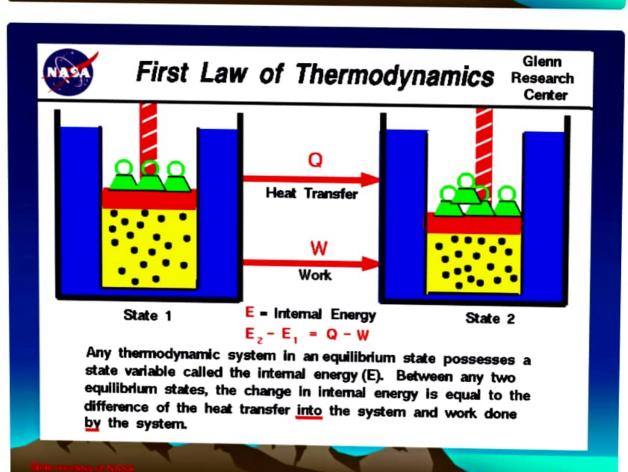
- Non-oxidative phase

Unit-111 HMP-shunt pathway ylucose 6-phosphate NADPT - genase NADPH +H+ K 6-phosphoglucanolactone alucanolactore hydrolase 6-phosphogluconate NADP + phosphoglu conate dehydrogenase CO, NADPH+H+K Ribulose 5 + Phosphate (somerase xylulose 56 hosphate Ribose 5-phosphate Transketolase, TPP sedoheptolose 7chyceraldenyde 3phosphate phosphate Transaldolase Erythrose y-Frictose 6phosphate phosphate Transketolase. TPP Fructose - 6- phosphate Gly cenal dehyde -3 Phosphate

Frictose 6-phosphol

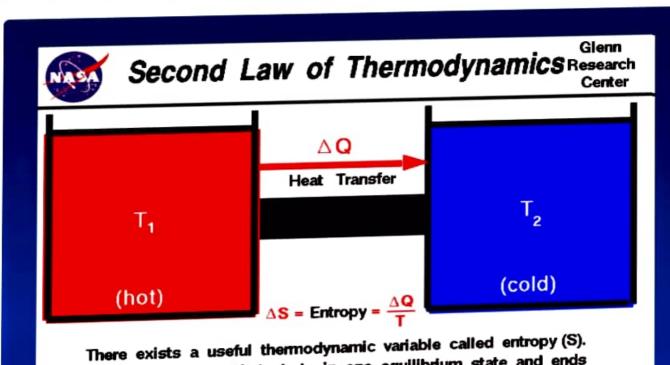
- Significance of HMP shunt
 - HMP shunt is unique in generating two impostant products pentoses and NADPH.
- Impostance of pentoses
- *In HMP shunt, hexoses are converted into pentoses, the most impostant being ribose 5-phosphate.
- * This pentose or it derivative, are useful for the synthesis of nucleine acids CONA; RNA)
- + Importance of NADPH
 - * NADPH is required for the biosynthesis
 Of fatty acids and steroids
- * NADPH is used in the synthesis of certain amino acids involving the enzymentamate & dehydrogenase.

⇒ Calycolysis broken down into 2 molecules of pyrivic is 1. Glucose is called glycolysis. given by Gustav embden, ofto Mayerhor 2, Tt was called EMP Pathway. J. Parnas 30 the cell and taken cytoplasam q occurs in 3. It 19ving organisms. all place of which are 4 ATP are fromed are fromed as end 2 NADH +H+ and utilized products. 5. The ATP and NADH+H+ are utilised for fixation Glucose 6(0) ATP . Hexokinase Glucose-6-phosphate 6(1) Hexose phosphate isomerase Fructusce - 6- phosphate phospho fructokinase ADPY Fructose-1,-Ephosphate Thogohosphale isomerase. Aldo lase phosphate Triose phosphate Triose p'hydroxy acetone cglyceraldehyde-3 phosphosphate (30) phate) (30) NAD+ (DHAP) (G-3-P) 4-3-P dehydrogenase NADH 2×Tucose bisphosphate (1,3 bisphasphoglycerically) ADP phosphoglycentinase ATP L extrose phosphate (3- phosphaglyceric acid) (3C) phopho gryceromutase phosphoglycerate 2×2 Enclase exphosphoenolpyruvate (3C) pylu Vickilase expyrive and (30) Step in glucolysis


1st law of thermodynamics

- The first law of thermodynamics is an extension of the law of conservation of energy
- The change in internal energy of a system is equal to the heat added to the system minus the work done by the system

$$\Delta U = Q - W$$


If heat added to a system, there are two things that can be done

- Change the internal energy of the system, or Cause the system to do work
- Combination of the two

2nd Law of thermodynamics

- Concept of temperature gradient as a natural phenomenon.
- The 2nd Law can also be stated that heat flows spontaneously from a hot object to a cold object (spontaneously means without the assistance of external work)

A natural process that starts in one equilibrium state and ends in another will go in the direction that causes the entropy of the

 $S_i > S_i$ (irreversible)

system plus the environment to increase for an irreversible process and to remain constant for a reversible process.

S, = S, (reversible)

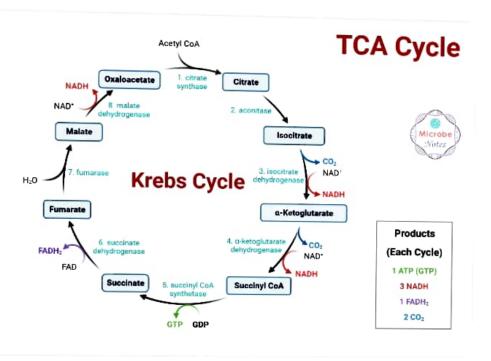
Structure of ATP

Structure of ATP

It consists of adenine, ribose, and a triphosphate moiety. Adenosine is attached by the 9-nitrogen atom to the 1-carbon atom of ribose which in turn is attached at the 5-carbon atom of sugar to a triphosphate group. Three phosphate groups form a triphosphate moiety. They are termed alpha (α), beta (β), and gamma (γ) phosphate groups. There are three phosphodiester bonds; one between phosphate groups, the second between the phosphate groups, and the third between the phosphate and ribose sugar. The first two are high-energy phosphodiester linkage and produce energy during hydrolysis. Hence, hydrolysis of ATP to ADP (Adenosine Diphosphate) and again to AMP (Adenosine Monophosphate) yields energy, but the breaking of the phosphodiester bond between ribose and the phosphate requires energy.

Production of ATP

ATP is an energy-rich compound primarily synthesized during cellular respiration in aerobic and anaerobic cells. Oxidation of glucose, lipids (fats), and amino acids produce the ATP molecules inside cells. The energy released during the oxidation of these nutrients is trapped in the form of the high-energy phosphodiester bond in the ATP molecule.


Glucose and ATP

Carbohydrate is the primary source of energy. Carbohydrates consumed in different forms (starch, sucrose, dextrose, lactose, fructose, etc.) are mostly broken down to monosaccharide form 'glucose.' Glucose is then subjected to metabolic reactions, glycolysis, Krebs cycle, and oxidative phosphorylation and is oxidized to release energy. This released energy is trapped and stored in the form of ATP.

Glycolysis Diagram

Similarly, proteins and lipids metabolism also produce simple end products like acetyl CoA, succinyl CoA, keto-acids, ammonia, etc., which are then subjected to the Krebs cycle and oxidative phosphorylation to yield ATP molecules.

The Krebs cycle, also known as the citric acid cycle or TCA cycle, is a series of reactions that take place in the mitochondria, resulting in the oxidation of acetyl CoA to release carbon dioxide and hydrogen atoms that later lead to the formation of water.

Krebs Cycle

- This cycle is termed the citric acid cycle as the first metabolic intermediate formed in the cycle is citric acid.
- This cycle is also termed tricarboxylic acid (TCA) because it was then not
 certain whether citric acid or some other tricarboxylic acid (g., isocitric
 acid) was the first product of the cycle. However, now it has been known
 that the first product is indeed citric acid and thus the use of this name
 has since been discouraged.
- This cycle only occurs under aerobic conditions as energy-rich molecules like NAD⁺ and FAD can only be retrieved from their reduced form once they transfer electrons to molecular oxygen.
- The citric acid cycle is the final common pathway for the oxidation of all biomolecules; proteins, fatty acids, carbohydrates. Molecules from other cycles and pathways enter this cycle through Acetyl CoA.
- The citric acid cycle is a cyclic sequence of reactions formed of 8 enzyme-mediated reactions.
- This cycle is also particularly important as it provides electrons/ highenergy molecules to the electron transport chain for the production of ATPs and water.
- Pyruvate formed at the end of glycolysis is first oxidized into Acetyl CoA
 which then enters the citric acid cycle.

Electron Transport System (ETS)

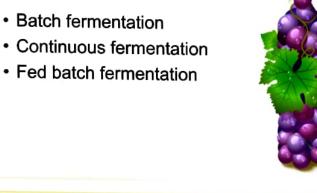
The Electron Transport System (ETS) is a series of protein complexes located in the mitochondrial inner membrane. It plays a crucial role in generating energy for the cell through the process of oxidative phosphorylation. Components of ETSThe ETS consists of five complexes

- :1. *Complex I (NADH dehydrogenase)*: Transfers electrons from NADH to ubiquinone.
- 2. *Complex II (Succinate dehydrogenase)*: Transfers electrons from succinate to ubiquinone .3. *Complex III (Cytochrome b-c1 complex)*: Transfers electrons from ubiquinone to cytochrome c.
- 4. *Complex IV (Cytochrome oxidase)*: Transfers electrons from cytochrome c to oxygen
 .5. *ATP synthase*: Uses the energy from the proton gradient to produce ATP.Process of ETSThe ETS works by passing electrons through a series of protein complexes,

which generates a proton gradient across the mitochondrial inner membrane. This gradient is used to produce ATP through the process of chemiosmosis. Oxidative Phosphorylation Oxidative phosphorylation is the process by which energy is generated in the form of ATP during the transfer of electrons from high-energy molecules to oxygen. It occurs in the mitochondrial inner membrane and is driven by the ETS. Mechanism of Oxidative Phosphorylation The mechanism of oxidative phosphorylation involves:1. *Electron transport*: Electrons are passed through the ETS, generating a proton gradient.2. *Proton gradient*: The proton gradient is used to drive the production of ATP through chemiosmosis.3. *ATP synthesis*: ATP is produced by the enzyme ATP synthase using the energy from the proton gradient. Importance of Oxidative

PhosphorylationOxidative phosphorylation is essential for generating energy in aerobic organisms. It produces the majority of ATP in cells and is critical for maintaining cellular function.Regulation of Oxidative PhosphorylationOxidative phosphorylation is regulated by:1. *Energy demand*: The rate of oxidative phosphorylation is adjusted according to the energy needs of the cell.2. *Substrate availability*: The availability of substrates, such as NADH and FADH2, affects the rate of oxidative phosphorylation.3. *Oxygen availability*: Oxygen is the final electron acceptor in the ETS, and its availability affects the rate of oxidative phosphorylation.

MODES OF FERMENTATION


Submitted to: Ramsaran sir Submitted by: Muskan arora Monika Shalini Megha kanica

Fermentation:

- Fermentation is a metabolic process that converts sugar to acids, gases or alcohol.
- It occurs in yeast and bacteria, and also in oxygen-starved (Deficient) muscle cells, as in the case of lactic acid fermentation.
- Fermentation, chemical process by which molecules such as glucose are broken down anaerobically.

Modes of fermentation:

- Batch culture technique is also called as closed system of cultivation.
- In this technique at first nutrient solution is prepared and it is inoculated with inoculum and then nothing is added in the fermentation tank except aeration.
- In batch culture, neither fresh medium is added nor used up media is removed from the cultivation vessel.
 Therefore volume of culture remains same.
- Since fresh media is not added during the course of incubation, concentration of nutrition decreases continuously. Furthermore various toxic metabolites also accumulates in the culture vessel. Therefore batch culture technique gives characteristics growth curve

with lag phase, log phase, stationary phase and decline

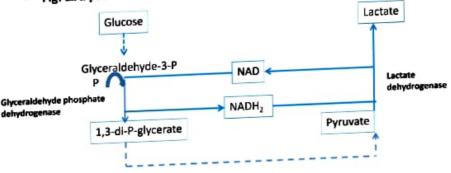
production of L.A., 1880.

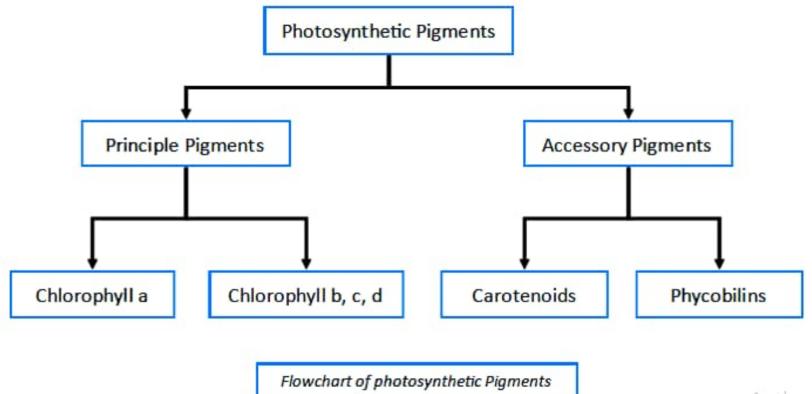
- Several carbohydrate substances such as corn, starch, molasses and whey can be used for the production of L.A.
- Derivatives of L.A. are used in the treatment of calcium deficiency (calcium lactate) and of anemia (iron lactate), as a solvent in lacquers (n-butyl lactate) and a plasticizer and humectant (sodium lactate)

LAB (Lactic acid bacteria)

Two types:

- Homofermentative:
- ✓ Only one product: LA
- ✓ As little substrate as possible is converted into cell material plus byproducts and as much as possible is metabolized into L.A.
- Mainly Lb. delbrueckii and Lb. leichmannii when glucose is used as substrate.
- Lb. bulgaricus when whey is used.


E.g. Lb bulgaricus, Lactococcus lactis, Streptococcus thermophilus etc.


- Heterofermentative:
- ✓ Besides L.A. many other products (byproducts) are there so, not suitable for commercial purpose
- ✓ E.g. Lb plantarum, Lb casei, Leuconostoc etc.
- All LAB (Lactic Acid Bacteria) are Facultative rather than obligate anaerobes. So bioreactors need not to run with compete O2 exclusion

Biosynthesis

L.A. from glucose via glyceraldehyde-3-P, 1,3-di-P-glycerate and pyruvate

- Reducing power produced during oxidation of glyceraldehyde phosphate is transferred with an NAD-dependent lactate dehydrogenase to pyruvate, is reduced stereospecifically to L(+) or D(-) L.A.
- Theoretically, two moles of lactate are produced from 1 mole of glucose.
- Fig: L.A. production from glucose

Activa

TYPES OF PHOTOSYNTHESIS

There are two types of photosynthesis

 Anoxygenic Photosynthesis - phototrophic bacteria H2O is not oxidized and O2 is not produced, and thus the process is called anoxygenic photosynthesis.

CO₂+2H₂A+Light--→[CH₂0]+2A Example-Purple bacteria

H₂A=H₂O,H₂S,H₂ etc.

.

2

2. Oxygenic Photosynthesis-The oxidation of H2O produces molecular oxygen (O2) as a by-product. Because O2 is produced, photosynthesis in these organisms is called oxygenic photosynthesis.

2H₂O→ 4H⁺+O₂+4e 6CO₂+12 H₂O+light----→ C₆H₁₂O₆+6O₂+6H₂O Example-Eukaryotes and cyanobacteria

ANOXYGENIC PHOTOSYNTHESIS

- It is type of photosynthesis process which frequently occurs in the microorganism which are mostly found in aquatic habitat.
 This reaction does not involve production of oxygen.
- Sulfur is used as a reducing agent during the process in green sulfur bacteria and purple bacteria.

ANOXYGENIC PHOTOSYNTHETIC BACTERIA

- Some photosynthetic bacteria can use light energy to extract electrons from molecules other than water.
- These organisms are of ancient origin, presumed to have evolved before oxygenic photosynthetic organisms.
- Anoxygenic photosynthetic organisms occur in the domain Bacteria and have representatives in four phyla – Purple-Sulphur Bacteria, Purple non- Sulphur Bacteria, Green-Sulfur Bacteria, Green non- Sulfur Bacteria.
- Anoxygenic photosynthesis depends on electron donors such as reduced sulphur compounds, molecular hydrogen or organic compounds.
- They are found in fresh water, brackish water, marine and hypersaline water.
- Anoxygenic photosynthetic bacteria have been divided into three groups on the basis of pigmentation: purple bacteria, green bacteria and heliobacteria.

OXYGENIC PHOTOSYNTHETIC BACTERIA

- The Oxygenic Photosynthetic Bacteria are unicellular or multicellular and possess bacteriochlorophyll a and carry out oxygenic photosynthesis.
 - They are mostly represented by gramnegative cynobacteria.
 - Carboxysomes and gas vesicles are present and also show gliding movement.
- Photosynthesis is oxygenic and autotrophic.
 Photosynthates get accumulated in the form ofglycogen.